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A methodology for generating orthogonal curvilinear grids 1s applied to two-dimensional 
domains. An important feature of the methodology is its ability to control cffectivcly the grid 
spacing, especially near the boundaries. This paper summarizes the governing equations used 
for grid generation. Then the numerical procedure is described, with special emphasis on the 
scheme used to enhance stability and accuracy of the solution. The significance of the distor- 
tion function and the way it is used to control grid spacing are illustrated in geometries com- 
monly found in engine combustion chambers. The influence of various parameters, including 
number of grid points, relaxation factor. and range of values of the distorion function, on the 
performance of the method are also investigated. It is concluded that the methodology can 
successfully produce smooth orthogonal grids with control of spacing in symmetric and 
nonsymmetric domains. ( 1991 Academic Press. Inc 

1. INTRODUCTION 

Numerical generation of grids has recently found extensive application to 
problems in physics and engineering. This is because many problems of practical 
interest, such as flows bounded by curved surfaces, can be calculated in curvilinear 
coordinates more accurately and conveniently than in Cartesian coordinates. In 
flow problems, the boundary conditions have to represented accurately in the 
numerical formulation since the region in the immediate vicinity of solid surfaces is 
generally dominant in determining the character of the flow, especially at high 
Reynolds numbers. 

Thompson et al. Cl-31 have introduced a powerful approach for the numerical 
generation of boundary-fitted curvilinear coordinate systems on fields containing 
any number of arbitrary two-dimensional bodies. However, the Thompson et al. 

method has the drawback of yielding a nonorthogonal coordinate system. When 
the Navier-Stokes equations are solved in nonorthogonal grids, many additional 
terms arise in the computer code. Thus, programming becomes more difficult, while 
storage and time requirements increase considerably; also, instability and accuracy 
problems associated with the existence of metrics in the equations could arise 
during the solution. 
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Some of these problems could be alleviated when the equations are solved in 
orthogonal curvilinear grids. Barfield [4] proposed a method based on conformal 
mapping of the boundary of a closed two-dimensional region on the perimeter of 
a rectangular polygon in which an orthogonal rectilinear grid is inscribed. Meyder 
[IS] presented a method to generate orthogonal curvilinear coordinates by solving 
for the potential and force lines in a simply-connected region and taking these as 
the coordinate lines. However, the power of such conformal mappings is limited due 
to the simultaneous requirements of orthogonality and equality of the scale factors. 

Hung and Brown [6], and Pope [7] have used methods less restrictive than the 
conformal mappings presented in [4, 5). Specifically, they have considered the 
ration of scale factors constant throughout the domain, but not necessarily equal to 
unity. Habib and Whitelaw [S] also used the method of Pope [7] to construct 
orthogonal grids. Mobley and Stewart [9] have suggested construction of an 
orthogonal mapping by nonuniform stretching of the conformal coordinates. 
Another attempt to produce orthogonal curvilinear grids was that of Haussling and 
Coleman [lo]. However, although their method was applied to smooth geometries, 
in most cases the constructed grids were not orthogonal. 

Ryskin and Lea1 [ 111 have proposed a flexible methodology for the numerical 
generation of orthogonal mappings, with the ratio of scale factors variable 
throughout the domain. They identified three types of problems: 

(1) The shape of the domain is not known in advance, but is to be deter- 
mined as a part of the solution of a physical problem (e.g., free boundary problems 
in fluid mechanics). 

(2) The shape of the domain is known, but the distribution of the coordinate 
nodes along the boundary is not specified and may be determined by the mapping. 

(3) The shape of the domain is known and the distribution of the coordinate 
nodes is specified along all boundaries; i.e., the complete boundary correspondence 
is prescribed. 

Two different methods of implementing their mapping, i.e. the strong constraint 
method and the weak constraint method, were presented in relatively simple 
geometries. The strong constraint method was applied to problems of type (l), 
while the weak constraint method was applied to problems of type (3). However, 
neither method was aplied to the study of problems of type (2). Instead, it was 
simply stated, without giving any details, that the strong constraint method might, 
in principle, be applied to problems of type (2). It was also suggested, that the 
weak constraint method could be used conveniently for problems of type (2) by 
prescribing some reasonable boundary correspondence. Since a reasonable boundary 
correspondence may not be obvious in most cases, several iterative guesses would 
be required, thus making the weak constraint method rather impractical for 
complex problems of type (2). 

Chikhliwala and Yortsos [ 121 investigated further the applicability of the weak 
constraint method proposed by Ryskin and Lea1 [ 111. They reported that a linear 
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distribution of the shape factor and symmetric geometries resulted in grids of higher 
accuracy. In contrast, the method did not produce grids of satisfactory accuracy in 
nonsymmetric regions. No control of grid spacing was reported in their examples. 
However, the shape factor was prescribed at the boundaries, and according to 
Ryskin and Lea1 [ 111 this should have affected the grid spacing. 

The work presented here aims to extend the methodology of Ryskin and Lea1 
[ 111 in order to solve problems where the shape of the domain is known and the 
distribution of the coordinate nodes is prescribed to a portion of the boundary 
where the distortion function is not prescribed. Our methodology can also address 
problems where the distribution of the coordinate nodes is not prescribed at all on 
the boundaries of the domain. Furthermore, our ability to prescribe the distortion 
function in those boundaries where the distribution of the nodes is not prescribed 
allows for a higher degree of control of grid spacing, especially near the boundaries. 

Control of grid spacing is an important requirement since we intend to use the 
grids for problems arising in the study of reciprocating internal combustion engines. 
Such typical problems are the calculation of fluid flow through the inlet ports and 
within the cylinder of internal combustion engines, and the study of transient heat 
transfer from the combustion gas to the surrounding surfaces [ 141. Both problems 
involve large velocity and temperature gradients near the boundaries. In addition, 
the geometries of interest are complex, and typically not symmetric. 

This paper summarizes the governing equations used for grid generation and the 
numerical procedure used to solve them. Particular emphasis is placed on adapting 
a numerical scheme able to achieve stable convergence with minimal numerical 
error. The ability of the method to control grid spacing will be illustrated in 
geometries commonly found in engine combustion chambers. Finally, the influence 
of various parameters, including number of grid points, relaxation factor, and range 
of values of the distortion function, on the performance of the method will be 
investigated. 

2. GRID GENERATION PROCEDURE 

A. Muthematial Development 

This section contains the governing equations for generating an orthogonal grid. 
Since we have adapted the basic system of equations proposed by Ryskin and Lea1 
[11] for our work, only a short description of the formulation will be given here. 

The system of equations defining the mapping is produced by observing that x, 
as a Cartesian coordinate in the physical space, is a linear scalar function of 
position and the same applies to Y. Therefore, grad(x) and grad(y) are constant 
valued vector fields, and it follows that 

v2x=o, v2y=o, 
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where V* is the covariant Laplace operator given by 

Equation (1) can be written in the orthogonal 5, q coordinates as 

(2) 

(3) 

In the above equations, f(<, ye) is the distortion function, which is defined as the 
ratio of the scale factor in q-direction, over the scale factor in {-direction; i.e., 

f(5, tl) = 4,/h,, (4) 

where h, and h, are given by 

Using the fact that in an orthogonal grid the metric gr2 given by 

is zero, two additional equations have to be valid everywhere in the domain: 

(5) 

For the special case off(& n) = 1, Eqs. (5) become the Cauchy-Riemann equations 
which are used in conformal mapping. We also abserve that Eqs. (5) satisfy both 
Eqs. (2) and (3). In fact, by suitably differentiating Eqs. (5), we can produce 
another system of differential equations which could be used instead of Eqs. (2) and 
(3) for grid generation. 

Since our objective is to generate a grid with control of spacing, an additional 
aquation for the distortion function is needed to complete the formulation. Our 
methodology for controlling grid spacing differs considerably from the procedure in 
[ 111. Thus, it will be discussed in detail in the following section of the paper. 
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B. The Distortion Function 

First, let us explain the physical meaning of the distortion function defined by 
Eq. (4). The distortion function specifies the ratio of the sides of a small rectangle 
in the X, y plane which is mapped onto a rectangle in the 4, q plane. The values that 
f’can take are always positive with a reasonable upper limit of about 10, as can be 
concluded from Fig. 1. If the numerical values of,f throughout the domain could be 
controlled, this would enable us to control the spacing of the nodes everywhere in 
the domain. For example, to attract the grid lines towards a boundary where 
y = const. then, simply, ,f values less than unity should be prescribed at the nearby 
points. On the other hand, attraction towards a boundary where i” = const. will be 
achieved whenfgreater than unity is prescribed. This shall be illustrated in Section 
3, where several numerical examples will be given. 

In order to solve the system of Eqs. (2) and (3) for the values of the coordinates 
X, 4’ at a given grid point, the value of the distortion function f at that point needs 
to be known. As will be explained in Section C, f(<, y) cannot be prescribed from 
the beginning everywhere in the domain, without possibly violating the 
orthogonality condition close to the boundaries. Instead, the variation off in the 
domain should be obtained from the solution of a differential equation. We propose 
an equation of the form 

The motivation for suggesting Eq. (6) is that it could control grid spacing and 
provide a smooth variation off throughout the domain. The latter is a very critical 
requirement to minimize deviations from orthogonality. Ryskin and Lea1 [ 111 had 
earlier suggested that an elliptic partial differential equation (of the form of Eq. (6) 
but with the RHS equal to zero) could be used. However, instead of demonstrating 
the use of an elliptic PDE they preferred to use a simpler algebraic approach for 
their studies. In our opinion, their approach may have merits for grid generation in 
smooth peanut-shaped domains; however, in the course of our study, it was found 
that the algebraic scheme would give unsatisfactory results when applied to 
nonsmooth geometries. Thus, Poisson’s equation (6) was chosen. 

The function G(t, q) in Eq. (6) can be used to control the distribution of the 

Y 

t X 

I [II n 
f<l f=l f> 1 

FIG. 1. Graphical representation of three elements with the corresponding value of .f for each 
element. 
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distortion function throughout the domain; this is equivalent to controlling the grid 
spacing. Thus, G(5, q) is given the name “generation of distortion.” G(<, r)) should 
typically involve some combination of sinusoidal, cosinusoidal and exponential 
functions, i.e., 

G(i”, rl) = cona. .fi(t) .fAr), (7) 

where const. is a suitable real number, fi(<) is a function of 4, and fi(r) is a func- 
tion of q; the only requirement is that Eq. (6) give positive values off everywhere 
in the domain. Another treatment is to write G in the form 

G(i”> v) = CCC> v) + V4, v) ..f(L r). (8) 

In usual problems, we set I’((, q) = 0 everywhere, so that C(s, 9) = G(<, n). It turns 
out that Eq. (8) can be used to give adaptive features to our grid generation. This 
can be recognized by observing that giving large values to C(& II) and V(?j, q), say 
_+ 1030, the solution of Eq. (6) at a point yields the prescribed value off at that 
point. 

Equations (2) and (3) are linked together via the distortion function Eq. (6) to 
form a system of three simultaneous partial differential equations. Solution of the 
system of PDEs with appropriate boundary conditions will yield the coordinates af 
an orthogonal grid with control of spacing. At each boundary we can apply the 
following conditions for x(t, v) or ~(5, q): 

(i) Dirichlet condition, i.e., prescribed value of the variable at the boundary. 
(ii) Neumann condition, i.e., prescribed normal derivative at the boundary. 

(iii) Mixed Dirichlet and Neumann conditions. 

The distortion function may or may not be prescribed at the boundary. If .f is 
prescribed, then only the shape of the boundary can be prescribed (but not the 
distribution of x and y). If f is not prescribed, its value at the boundary can be 
found using Eq. (5). 

C. Numerical Procedure 

In this section, we will summarize the numerical procedure used to solve the 
governing equations of the grid generation. Emphasis will be placed on presenting 
the numerical scheme developed to achieve stable convergence and minimize 
inaccuracies during the solution process. 

The standard approach of discretizing Eqs. (2) and (3) is by using central 
differences, second order in accuracy. Since the same procedure applies to both 
equations, we will present the procedure only for Eq. (2). Equation (2) can be 
rewritten as 
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Using the second-order finite difference representations, 

9: = (SE - .x,)j(2d<) 

x, = (XN - Xs)/(2&) 

x;< = (XE -2x, + xw)/(d5)’ 

X ,1’1 = (XN - 2X, + x,),‘(dq I2 

with At = dy, Eq. (9) becomes 

upxp = UEXE + awxw + UNXN + a,x,. (10) 

The notation (P, E, W, N, S) stands for (i, j), (i + 1, j), (i- I, j), (i, j+ 1 ), (i, ,j- 1) 
points, respectively. The coefficients a, are 

u,=u,+u~+u,+u, 

%=f3+ 1/2.f'f, 
a, =,f 3 - l/2 f’2.j: 

uN =.I'- 1/2/, 

as =f+ lP.f,. 

Clearly, under certain conditions some u’s could be positive and other negative. 
This situation would result in unstable convergence, or inaccurate results. This is 
most probable when initial guesses for the x,y coordinates are very different from 
their final values, or when we try to make the grid finer in some areas. We believe 
that the poor results reported in [12] for nonsymmetrical domains are in part due 
to quch masons. The same reasons may account for the poor results of [lo], as 
well. Unftirttmrtely, the existence of first derivativcj in Eqs. (2) and (3) causes many 
problems. 

Since equations for grid generation with only second derivatives have yet to be 
proposed, the existing numerical scheme can be improved by ensuring that all coef- 
ficients in Eq. (10) have the same sign. Thus, we use forward finite differences for 
.Y: when f,L is positive, and backward differences when fc is negative. On the other 
hand, backward finite differences are used for x, when & is positive, and forward 
differences when ,f, is negative. Hence, the coefficients in Eq. (I 0) become 

a,=u,+u,+u,+u, 

aE =,f" +f'"[.J<, U] 

uw=f"+f'[-f,i,O] 

uN =f+.f2[-.f,>o] 
a, =f+ u; 01. 

(11) 
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The symbol [cr, fl] denotes the greater of TX and 8. It should be mentioned that 
fourth-order finite differences have been used for ,ft and f, to improve the perfor- 
mance of the numerical scheme. 

The same procedure is followed for Eq. (3) yielding a discretization equation for 
JJ of the form 

UPyP = a,yE + aWl’W + aNyN + aSl’S, (12) 

where the coefficients are deftned as those of Eq. (1 I ). The discretization of Eq. (6) 
is straightforward, and shall not be discussed here. 

The choice of d< = dq in our finite difference scheme has important implications 
for the distortion function. If M points in the x direction and N points in the .Y 
direction were used to map the domain in the x, 4’ plane onto a rectangular region 
in the 5, 7 plane, the ratio of the sides of the rectangle would be M/N. However, 
the latter ratio cannot be arbitrarily chosen, because it depends upon the domain 
and the distortion function [ 131. If f were chosen a priori, then we would either 
have to drop the orthogonality condition, or to update the values of nis and do 
(which would no longer be equal to each other) at every iteration. The latter 
strategy would increase substantially the programming effort as well as the com- 
putational time. Thus,f‘should only be prescribed at the boundaries of interest, and 
not everywhere in the domain. 

Since the distortion function cannot be prescribed a priori everywhere in the 
domain, an iterative procedure must be used to solve the system of PDEs that 
govern grid generation. A suitable scheme is presented below: 

(1) Initialize ~(5, ‘I) and ~$5, q) at the portion of the boundary where f is 
prescribed. This has been implemented by first guessing x([, ye) and then using 
cubic-spline polynomials to find v( 5, a). 

(2) Solving the PDEs 

(13) 

initialize the distributions of ~(5, q) and ~(5, r~). The resulting grid is curvilinear. 
(3) Using one of Eqs. (5), or Eq. (4), find the distortion function at the por- 

tion of the boundary where it is not prescribed. In the remaining of the boundary, 
use the prescribed values off 

(4) Once f is known at the entire boundary, use Eq. (6) to find S in the 
interior of the domain. 

(5) Solve Eqs. (2) and (3) using the ADI method (alternating direction 
iteration) with the TDMA algorithm. 

(6) Apply the boundary conditions for x and y in order to find their distribu- 
tion at the portion of the boundary where they are not prescribed. 

(7) Check if convergence has been attained. If not, go to step 2 and repeat. 
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3. ILLUSTRATION OF THE METHOD 

A. Examples of’ Grid Generation 

In this section we shall present the results obtained using the proposed method 
for two geometries of interest. First, an example of the fluid domain in an engine 
combustion chamber with a bowl-in piston is given in Fig. 2. In this case, 31 x 21 
grid points were used, and the maximum deviation angle from orthogonality 
(MDO) was found to be 1.453”. The average deviation angle from orthogonality 
(ADO) calculated using deviation errors at every point of the domain is 0.35”. Both 
MD0 and ADO values are very small, considering the difficult geometry of the 
domain. Overall, the generated grid is very smooth. This is a very critical require- 
ment for any type of grid, orthogonal or nonorthogonal, especially at regions where 
large gradients prevail. Even when robust numerical techniques such as the finite- 
volume method are used, a smooth grid would give more accurate results as 
discussed in [15]. 

The boundary conditions for .Y and .V were 

side A B 

side BC 

side CD ?,=o 

side DA 

FIG. 2. Orthogonal grid. .f= 0.5 on side A& G = 0, everywhere. 31 x 25 points. 
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For the distortion function the following boundary conditions were used: 

side AB. f was prescribed equal to 0.5. 

sides BC, CD, and DA. f was not prescribed, but was calculated at each itera- 
tion using Eq. (4). 

As shown in Fig. 2, by specifying f = 0.5 on side AB, we have constructed a well- 
proportioned orthogonal grid. However, we may want to attract the grid lines 
towards side AB in order to calculate more accurately the fluid motion directly 
above the piston (where large velocity gradients are likely to exist). One way of 
achieving this objective is by prescribing a smaller value off on side A B. According 
to Section 2B, this will result in a finer grid near that side. To illustrate this, the 
same geometry and boundary conditions discussed previously have been used, but 
f = 0.1 was prescribed on side AB. The grid constructed is shown in Fig. 3. Indeed, 
a smaller value off at side AB results in attracting the grid towards that side. For 
that grid, MD0 and ADO are 5.24 and 1.45”, respectively. Although MD0 and 
ADO have been increased by decreasing& the resulting grid is still satisfactory. As 
discussed in [ 151, a value of ADO equal to 2” is the upper limit for the grid to be 
considered orthogonal. For ADOS smaller than 2”, the magnitudes of the addi- 
tional terms arising due to the non-orthogonality of the grid are small. However, 
for ADOS larger than 2”, the grids should be treated as nonorthogonal and non- 
orthogonal flow codes would have to be used. 

Now the question is how the grid can be attracted even more towards side AB. 
For reasons that will be explained in Section 3B, further decreasing (below 0.1) the 
value of f on side AB, will not improve the grid attraction towards that side. 
Instead, an effective way of increasing grid density is by prescribing a nonzero 
G({, q) in Eq. (6). Note that in the two previous examples, G was set to zero 
everywhere. Keeping every other parameter the same as before, we additionally 
prescribe 

G(t, q) = 0.01 .sin(qn/2). Icos(ni”)I, 

FIG. 3. Orthogonal grid 31 x 25 nodes. f = 0.1 on side AB, G = 0 everywhere. 



ORTHOGONAL GRIDS WITH CONTROL OF SPACING 447 

FIG. 4. Orthogonal grid, 31 x 25 nodes. ,f= 0.1 on side A& G(t, q) = 0.01 sin(nq,/2). Icos(nt)l 

where i’ varies from zero on side AD to one on side BC, and ye varies from zero on 
side DC to one on side AB. The resulting grid, shown in Fig. 4, has an MD0 of 
4.91’ and an ADO of 1.43”. The smaller values of MD0 and ADO (than in the 
previous example) can be attributed to the smoother variation off achieved in this 
case. As desired, the attraction of the grid towards side AB has increased. 

Now some insight will be given into how the function G, used in the example of 
Fig. 4, was chosen. In the particular example, we are interested in attracting the 
grid nodes towards side AB more than in the example of Fig. 3. Using a greater 
than zero value of G results in smaller values of ,f in the domain, which achieves 
grid attraction. Since a large positive value of G could even result in negative values 
off; a scaling constant equal to 0.01 is used for control purposes. The sinusoidal 
term is used to control the grid spacing in the vertical direction, so as to achieve 
gradual attraction towards side AB. Note that this term varies gradually from zero 
on side DC, thus giving zero G on that side, to one on side AB. The cosinusoidal 
term is intended to vary the vertical grid attraction with horizontal position in the 
domain, so as to increase the vertical grid attraction close to corners A and B. For 
G to be positive for values of 4 greater than $, we have considered only the absolute 
values of the cosinusoidal term. We should note here, that our chaise of G in this 
example is not the only possible. In principle, any function proposed in [l-3] for 

i i i i i 
I I 

FIG. 5. Conformal mapping. 
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R 

I 

B 

x 

FIG. 6. Orthogonal grid, 31 x 25 nodes 

control of the grid spacing in nonorthogonal grids may be used. However, we must 
be aware that there is the possibility of obtaining a negative value off in some 
points. If this happens, convergence is destroyed. Thus, the G function should be 
chosen with care. 

To demonstrate the advantages of this method over others in controlling the grid 
spacing, conformal mapping has been used to construct a grid for the same 
geometry. The resulting grid is presented in Fig. 5. Obviously, a serious drawback 
of the conformal mapping is that we have no control over the grid spacing. 

We shall end this section by presenting a grid generation in a nonsymmetric 
geometry. An example of the heat conduction domain in an offset bowl-in piston 
is presented in Fig. 6. To illustrate the ability of our method in attracting the grid 
towards a desired region of the domain, we have prescribed a nonconstant value 
for f on boundary DC. In particular, f was varied from 0.5 at point D to 0.1 at 
point C according to the distribution ,f = 0.5 - 0.4 t’.*. This distribution resulted 
in attracting the grid towards the right side of the bowl. For this case, MD0 
and ADO are 4.28” and 0.89”, respectively. The relatively small deviations from 
orthogonality suggest that the method can be applied with equal success to generate 
grids in nonsymmetric as in symmetric domains. 

B. Sensitivity Studies 

The performance of any method of constructing orthogonal grids can be 
primarily evaluated based on three criteria, namely the number of iterations, the 
maximum and average deviation angles from orthogonality, and the ability of the 
method to control the spacing over the domain. Additional considerations include 
whether performance depends on the initial guesses, whether the method can 
handle geometrical complexities, etc. In this section, the influence of various critical 
parameters on the performance of our grid generation method will be discussed. As 
an illustrative example, the geometry presented in Fig. 2 has been chosen. 
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a. Control qf Spacing 

The ability of the method to control spacing over the domain depends on the 
geometry of the domain, the initial guesses for the x, y coordinates, the aspect ratio 
of the domain, the boundary conditions for x, y, the boundary conditions for the 
distortion function f; and the type of generation of distortion function G(<, a). The 
geometry of the domain has been found to affect mostly the orthogonality of the 
grid, and not the ability to control spacing; the latter is almost independent of 
geometry. 

The initial guesses for x, y has some effect on the ability to control spacing, as 
well. We have found that with educated initial guesses, construction of the grid is 
achieved more readily. This is mostly important when the aspect ratio of the 
domain is substantially different than unity. Also, when we prescribe a Neumann 
boundary condition for one coordinate and a Dirichlet condition for the other, the 
control of the spacing can be performed more effectively. The importance of the 
distortion function ,f([, v) and the generation of distortion function G(r, ‘I) with 
regard to grid spacing has been illustrated in Section 3A. The critical requirement 
for smooth variation off and G over the domain should be emphasized here. In 
most cases, the coefficients of the algebraic system that is solved, namely the u’s 
given by Eq. (11) are small numbers, less than unity. Therefore the solution is very 
sensitive to round-off errors. 

b. Number qf Iterations 

The number of iterations depends on the number of nodes, the relaxation factor, 
and the distribution of the distortion function,f: This relation is illustrated in Fig. 7 
for different values of ,f prescribed on side AB. For a given J the number of itera- 

310 

v) 270- 

: .- 
$ 230- 
Q) 

= 

s 190- 

: 
J2 E 150- 

2 . f=O.5 
110- 0 f=l.O 

200 400 600 800 1000 1200 

Number of Nodes 
FIG. 7. Efkct of the number of nodes and specifiedJon side AB on the number of iterations 
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0.0 0.5 1.0 1.5 2.0 

Relaxation Factor 

FIG. 8. Number of iterations versus relaxation factor. 

tions increases with the number of nodes. Also very small values ofJ‘ (for instance, 
f = 0.1) result on larger number of iterations. This can be attributed to the smaller 
values of the a, coefficients of the linear algebraic system. By increasing f, we 
increase the value of the diagonal coefftcients of the tridiagonal matrix, and thus the 
Gauss-Seidel scheme converges in fewer iterations. However, if we increase f over 
a critical value (for this case f = 1.0) which depends upon the geometry and the 
number of nodes, some nodes (near side AB) effectively get smaller values off, and 
thus the number of iterations begins to increase again. 

The effect of the relaxation factors on the number of iterations is illustrated in 
Fig. 8. The relaxation factors for x and y were set equal to each other. Initially, as 
the relaxation factor increases towards 1.0, the number of iterations decreases 
significantly. Although a minimum is reached for a relaxation factor equal to 1.6, 
the improvement is not significant beyond a value of 1.0. For larger values of the 
relaxation factor (above 1.6), convergence becomes slower again, and ultimately 
(beyond 2.0 for this geometry) the solution may diverge. Since smaller values of the 
relaxation factor generally result in more stable convergence, a value of 1.0 (instead 
of 1.6) was used in our work. 

c. Deviation from Orthogonality 

This section examines the dependence of MD0 and ADO on various parameters. 
Undoubtedly, the most important parameter is the geometry of the domain. We 
have found that there may be corners and angles on the boundaries in critical areas 
which increase local deviations from orthogonality, resulting in some high MDOs; 
however, even for these grids, ADO would generally be satisfactory. Of course the 
question of whether we can construct an orthogonal grid in any two-dimensional 
domain still remains. However, we believe that, for most two-dimensional domains, 
the increasing deviation from grid orthogonality that results with increasing 
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6.5 

6.0 

200 250 300 350 400 450 500 

Number of Points 
FIG. 9. Maximum deviation from orthogonality versus number of nodes. .f= 0.2 on side AB. 

geometrical complexity is mostly due to numerical errors associated with larger X, J 
gradients. 

Although there is no obvious way of presenting in a graph the dependence 
between MD0 or ADO and geometry, more complex geometries are likely to 
require a larger number of nodes. The relation between MD0 and number of nodes 
is shown in Fig. 9. The figure suggests that the greater the number of nodes, the less 
the MDO. This is expected because the transition from continuous to discrete space 
is done more accurately when a greater number of nodes is used. Figure 9 has been 
obtained using f = 0.2 on side AB. 

However, the deviation from orthogonality also depends on the prescribed value 
off (and not just on the number of nodes). The effect of the value of the distortion 
function f on ADO (instead of MDO) is shown in Fig. 10. Initially, asfon side AB 

O-1 t 1 - 
0.0 0.2 0.4 0.6 0.8 1 .o 1.2 

f on Side AB 
FIG. 10. Average deviation from orthogonality as a function of /‘on side AB. 



452 TAMAMIDIS AND ASSANIS 

increases up to a critical value, the diagonal coefficients of the linear system 
increase, and the gradients of x and y near the boundary can be calculated more 
accurately in the <, q plane. These two effects result in smaller ADO. However, 
increasing f on side AB beyond a critical value will result in less accurate calcula- 
tion of the gradients near side AB, as well as in smaller values of ,f directly above 
AB; these effects would increase ADO. The trade-offs involved in the calculation of 
the gradients result in an optimum value for minimum ADO. In our example, this 
optimum value off is approximately equal to 0.5. 

4. CONCLUSIONS 

A method for numerical generation of orthogonal curvilinear grids has been 
presented. The most attractive feature of the method is its ability to control grid 
spacing. The numerical scheme used to solve the governing equations has been 
optimized to ensure stable convergence of the solution with minimal numerical 
error. Application of the method has been illustrated in geometries commonly 
found in engine combustion chambers. The influence of various parameters, 
including number of grid points, relaxation factor, and range of values of the 
distortion function, on the performance of the method has been investigated. We 
can conclude the following: 

(i) The generated grids are smooth. This is a very critical requirement for 
any type of grid, orthogonal or nonorthogonal, especially at regions where large 
gradients prevail. 

(ii) The generated grids are orthogonal at the boundaries, as well as in the 
interior. The orthogonality of the grid at the boundaries is a very attractive feature 
since normal derivatives at the boundaries can easily be calculated. 

(iii) The spa cmg of the grid lines can be effectively controlled by manipu- 
lating the prescription of the distortion function at the boundaries, or the function 
generating the distortion. Thus, grids can be produced which are finer near the 
boundaries, or anywhere within the two-dimensional domain where large gradients 
prevail. 

(iv) The methodology can be applied with equal success to generate grids in 
symmetric and nonsymmetric domains. 

Overall, it is anticipated that orthogonal grids with control of spacing generated 
using the methodology proposed in this paper can be successfully applied to the 
numerical simulation of fluid flow and heat transfer processes in internal combus- 
tion engines. 
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